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Abstract. The non-consewative noisy critical height sandpile cellular aufomon with open 
boundary condiiions is studied analytically on the Bethe lauice. Using the modified method 
of Dhar and Majumdar [I]. the single-site probabilities, pair probabilities and the avalanche 
size distributions for the lhree versions of the automaton. wifh different amount of dissipated 
particles, are calculated. 

1. Introduction 

Since 1987, when Bak eial [2] came up with the concept of self-organized criticality (soc), 
this phenomenon has been widely studied numerically [2-10], analytically [l, 11-18] and 
experimentally [19-21]. For the numerical and analytical studies model systems called 
'sandpiles' are often used. 'Sandpiles' are cellular automata, which mimic the dynamics of 
the spatially extended many-particle systems with local interactions.' They are defined on 
n-dimensional lattice (for example, a square lattice), by a starting particle distribution on its 
sites, by local dynamical rules, and local critical condition. They work in two dynamical 
modes, the first one is the input process, followed, under the certain circumstances, by the 
second mode, the relaxation of the system. 

(i) Input mode. Equal particles (for example, sand grains of size 1 in arbitmy units) are 
added from outside to randomly chosen sites in the lattice. After each particle addition, 
the local critical condition is checked. The process continues until in any site the local 
critical state is reached. The local critical state can be defined, for example, by the local 
critical column height of particles. When the critical state has been reached, the input 
stops and the dynamics switches itself to the second mode. 

(ii) Avalanche process. The critical site topples and the particles are distributed to sites in 
the neighbourhood according to the defined local dynamical rules. This also may drive 
the neighbours to the supercritical state and thus the avalanche may continue further in 
one or more directions. 

It has been shown numerically, that such a dynamics drives the system to the self- 
organized critical state with long-range time and space correlations [Z, 31, but, unlike the 
phase transitions, without any fine tuning of system parameters. The main indication of 
the SOC state is the power-law distribution of the avalanche sizes. Nature gives us a nice 
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manifestation of space and time-scale invariancy in the ubiquitous occurrence of fractal 
structures and the flicker noise phenomena. It is therefore supposed that the detailed study 
of systems with self-organized criticality can shed some light on the creation of the scale 
invariances in reality. 

Sandpile cellular automata and the self-organized critical state were mainly studied 
numerically [Z-lo]. Analytical studies followed two lines: 

(i) Analytical calculations on discrete systems, such as cellular automata [I 1-18]. 

(ii) Modelling of the spatially extended systems by stochastic differential equations 
[22,23,26]. 

The most complete analytical calculations were done for the Bak, Tang and Wiesenfeld 
model (BTW), that is for the critical height cellular automaton defined on a square lattice. 
Local distribution rules in this model affect only nearest neighbours of the critical site [Z]. 
The BTW model on the Bethe lattice was treated by Dhar and Majumdar [I]. The authors 
succeeded in the complete analytical characterization of the self-organized critical state 
by single-site probabilities, pair probabilities and power-law distribution of the avalanche 
sizes. 

By the analytical studies of the stochastic differential Langevine equation it was 
proved that the long-range correlations, and thus the self-organized critical state, are a 
consequence of the conservative dynamics, which conserves locally, and on an average, the 
number of particles [22,23,26]. On the other hand, numerical studies of non-conservative, 
continuously driven discrete models showed, that in the case of open boundaries, the scale 
invariancy exists, and the power-law scaling of avalanche sizes was found [4,24,25]. These 
models differ from the sandpile cellular automata in one crucial point. While cellular 
automata are noisy, and phase-space volume conserving systems, the continuously driven 
models (coupled map lattices) are deterministic and dissipative. 

In thk'paper I study analytically the BTw non-conservative model on the Bethe lattice. 
Non-conservation is implied by the fact, that not all of the particles are distributed to 
the nearest neighbours, but some of them dissipate to the environment. Thus my model 
is a noisy, non-conservative sandpile cellular automaton. Modifying the method of Dhar 
and Majumdar [ I  J, I calculated the single-site probabilities together with the avalanche 
size distribution, all in the final stationary state, to which the system is driven by its 
dynamics. My results show, that the avalanche size distributions decay exponentially 
and thus no soc state exists in noisy non-conservative sandpile of BTW type with open 
boundaries. 

2. Definition of the model and the single-site probabilities 

First, I describe the dynamics of the critical height non-conservative BTW cellular automaton 
on the Bethe lattice. As the other sandpile models, it has two dynamical modes; the input 
process and the avalanche. 

Input: 

hi -+ hi + 1 hi < h, (la) 

where hi denotes the height OF the sand column at the ith site and h, indicates the critical 
height. . ., 
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Figure 1. Three examples of disallowed 
configurations. 

Avalanche: 
If hi h, 

h, -+ hi - (Z  + E) = 1 h,. -+ h,, + 1 ( Ib)  

which means that z grains are distributed to the nearest neighbours nn at the Bethe lattice 
(in fact, z denotes the sum of nearest neighbours),. ii grains dissipate to the environment, 
and one p i n  rests on the original place. The critical height h, in ( l a )  and (Ib) equals 

h, = 1 + Z  f i i .  (IC) 

Initial conditions are random and the boundary conditions are open. The timescales of both 
processes are different. The avalanche is very quick in comparison with the time-scale of 
the drive. 

I have studied three- versions of the model (la)-(lc), namely having z = 3 and 
E = 1,2,3. The model of [I] then appears as a 'conservative limit' (E -+ 0). It can 
be seen, from the dynamics [la)-(le), that after the transients, in the final stationary state, 
one can get the one-grain configuration (e.g. one panicle per site) only as a rest configuration 
after the toppling. Because in the final stationary state 1, 2, 3, . . . , h,, = h,  - 1 grains per 
site are possible, the number of configurations equals h;, where N is the number of lattice 
sites. But some of the configurations, such as that in figure 1, are excluded. The reason 
is as follows. The sites with only one grain have just toppled. Therefore the previous 
configuration would have to contain some zero-particle sites, which is impossible [I]. 
-Ir what~foIbws;~~Imdifjj fhe~andyfkE;lrr;;&md of~Dhi;- and h4a.j'u-d- dere!oped for 

the conservative B'hv model on the Bethe lattice [I] and calculate the single-site probabilities 
and the distribution function for the avalanche sizes in the case of a non-conservative model. 
The possibility of calculation of pair probabilities is also shown. 

Let us have the Bethe tree T rooted on the vertex a. Two types of allowed configurations 
are defined on T ;  e.g. 
(i) strongly allowed; 
(ii) weakly allowed. 

Let us imagine, that the configuration C on T is allowed and that we connect the vertex 
a with another site b containing only one p i n  figure 2.  The new configuration arises. 
I f?  is still allowed, the old configuration C was strongly allowed. If the new configuration 
? is~disallowed, the old configuration C was weakly allowed. 

The number of strongly and weakly allowed configurations on~the tree T is given by 
the equations 
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Figure 2. The definition of the strongly and weakly 
allowed configurations. The tree T rooted on a consists 
of two subtrees Ti and Tz. Let the configuration on T be 
allowed. If it slays allowed also after the addition of the 
site b, which contains one grain, it is strongly allowed. In 
the opposire case it is weakly allowed. 

In equations (2a) and (2b) N,(T, ha) and N J T ,  h,) denote the number of weakly and 
strongly allowed configurations on T ,  if on site a there is a column height h,. If we 
remove the root vertex a of the tree T ,  it breaks into two subtrees and Tz with vertices 
a1 and az. Thus, if we exclude the disallowed configurations, the number of configurations 
N,(T, ha), N,(T, h,) for ha = 1 ,  .. . , h, is expressed as  

N d T ,  1) = NS(TI)~S(TZ). Ns(T, 1) = 0 (3a) 

NUJ(T, 2) = N,(E)NUJ(Tz) + NUJ(Tl)Ns(Tz) (36) 
N d T ,  3) = NW(i-l)NUJ(TZ) 

(3c) 
N J T ,  3)  = N,(Tl)N,(TZ) + ~UJ(TI)N,(TZ) + N,(Tl)N,(E).  

NdT, 2) = N,(z)”Z) 

To the expresions (3a)-(3c), which are also valid for the conservative case (fi = 0) [I], we 
add another ii equations for h, = 4,. . . , hcc: 

N,(T, h, =4,. . . , hec) = 0 

Ns(T, ha = 4,. . . , h c c )  = N~(TI)Ns(Tz) + Nu(Tl)N~(fi) + NS(TI)NW(TZ) ( 3 4  
+ N,(Tl)N,(G). 

Now, the sums (Za), (2b) look like 

Nu(T) =N,(TI)N,(Tz)(~+xIxz+xI +XZ) (4a) 

N s ( T )  = N,(i-l”TZ)[Q+XI + X Z ) + X l  +XI + X Z + X I X Z ) I  (4b) 

where x; denotes the relation between the weakly and strongly allowed configurations 
xi = Nu(G)/NdZ). 
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Let us now create the Bethe tree successively. The single site is the tree of the first 
generation. If we add two other sites, we get the tree of the second generation. Adding 
another four sites to the second generation tree one gets the tree of the thud generation, etc. 
In this way, we create the tree of the (m + I)th generation from one of the mth generation. 
If the lattice is great ( m  --f CO), the trees TI, TZ are equivalent trees of the (m - 1)th 
generation. Let us denote them as T@-I).  Taking this into account and using the equations 
(4n), (4b), one gets,the recursive relation 

In equation (3, x @ )  denotes *, ("9 The recursive relation (5) has one positive physically 
relevant fixed point x"  

where p w ,  denote the coefficients, that arise for X I  = x* ,  xz = x* in a great lattice. 
Using x' equation (6). and the equations (3a)-(3d), it is easy to calculate the relations 

N,(T,  I )  : N,(T,2) : N , ( T ,  3) : Nw(T,  h, =4,. .., hcc) 
: N,(T, 1)  : N,(T, 2)  : N,(T, 5) : N,(T, h, = 4,. . . , h,) 

= 1 : zx*: (X*)* : o :  0: 1 : 1 + 2 x *  : (x" + 1)2.  (8) 

Now we are ready to calculate the single-site height distributions, namely, the 
probabilities that at the randomly chosen site deep in the lattice one finds 1. 2, 3, . . . , h,, 
grains. Any site 0 which is somewhere far from the boundary is connected to the three 
trees T I ,  T2, E ,  In accordance with [I] the number of allowed configurations for the column 
height h o  = 1,2,3 is given as 

(9c) 

We also need ii additional expressions, namely for ho = 4, . . . , h ,  which are given by the 
equations 

1 3 

II j = l  j<k 

3 
N ( T ,  ho = 3) = n N,(T,) 1 + cxj + C X j X k  . 

"4 
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The site 0 is far from the boundary, it is therefore reasonable to use X *  instead of xi and 
to rewrite (9a)-(9d) in the form 

r=1 

The total number of the allowed configurations on the lattice is given, with respect to 
(9u)-(9d) and (6) by the expression 

where (0 = x* + 1. Taking into account the formulae (9)-(ll), the single-site probabilities 
are easily calculated as 

The numerical values of the single-site probabilities for all three studied versions of (la)- 
(IC) are listed in table 1 of the last section. For certain column height at the site 0, the 
single site probability depends only on A. Putting i; = 0, the single-site probabilities of the 
conservative automaton [ 11 are found. 

3. Pair probabilities 

The pair probability is defined as the probability of a certain column height configuration 
on the two distant sites in the Bethe lattice. Both sites are far from the lattice boundaries. 
Let us have the situation as shown in figure 3. The Bethe tree TK+~ rooted at the site Ax+] 
is decomposed to the tree Tk rooted on Ax and the tree UW+Z connected to the rest of the 
lattice through the site Ak+I [l]. According to the equations (4a) and (4b), taking into 
account, that the number of lattice sites tends to infinity, one gets 

Nw(Tk+l) = N~(&)N?(ux+z) + Nw@x)Nw(Ux+z) f Ns(Tx)Nw(Ux+z) + Nw(Tk)Ns(ux+z) 
(13a) 

(13b) 
Nz(G+l)  = ZNs(TC)Ns(uk+Z) f Nw(G)Ns(Uk+z) f Ns(Tk)Nw(uk+z) 4- n[Ns(Tk)Ns(Uk+d 

f Nw(Tk)Nw(uk+Z) + Ns(G)Nw(Uk+Z) + Nw(Tk)Ns(Uk+2)]. 

Figure 3. The recursive decomposition 
of the subtree E+! with the root site 
A ~ + I  to the subvees E with root site 
Ax and U,+*. 

- T  b-6- 
A 

k k+ 1 k+l 
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The matrix representation of the equations (13a), (36) is 
- 

&+I  Ns(uk+z)B?x 

with X, = and the matrix B given as 

The eigenvalues A I  and 12 and the eigenvectors SI and 52 of the transfer matrix 8 are 

and 

51=(-) 1 

1 
;2=(-j 

where q = (iZp f I)(& f 4 p  + 1). From equation (61, and (15a), (156) it is clear, that 11, 
are both positive and that hi z Al. Numerical analysis shows, that 

A2 - = 0.25(ri + l)-1.5. 
hi 

Using equatiions (13)-(16) and the diagonalization matrix Q = G I G 2 ,  one gets after some 
calculations 

By combining the expressions (17) and (11) the formula for the total number of allowed 
configurations on the  lattice^ is derived 

The pair probability P,(hi, hj), which means the probability that at the two lattice sites i, 
j in a distance n, the column heights are hi, h j ,  is calculated as follows. The equations 
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(9a)-(9d) give the number of allowed configurations if the column height at the site j is 
h j .  That means 

Nrotar(hi, h j )  = N ~ ( U " + Z ) N s ( 9 + 3 ) N ~ ( T . ,  h i ) a ( h j , x * ) .  (19) 

In equation (19) N,(T,, h i )  is given by (17), with N w ( Z ) ,  N , ( h )  calculated from ( 3 )  with 
respect to the column height at the site i. The probability Pn(h i ,h j )  is thus 

where A ,  B ,  C, D are numerical constants for certain 2. Pn(hi, hj )  depends on the column 
heights at positions i and j ,  on their distance n and on the amount of dissipated particles 
ti. For ii = 0 we get the result of Dhar and Majumdar [I] 

Pn(hi,  h j )  = P ( i ) P ( j )  + 5 . j4 -n  

where fi.j is a numerical constant. 

4. Avalanche size distribution 

From the point of view of self-organized criticality, the most important is the power-law 
character of the avalanche size distribution. For the conservative BTW model an the Bethe 
lattice, the power-law scaling was derived analytically and, as stated in [I], the avalanche 
size distribution is 

gs ,.. s-"2. (22) 

The size S of the avalanche is defined by the number of sites hit through one relaxation. 
Following Dhar and Majumdar [l] I study the probability of the avalanche of size S. In 
order to get the S-size avalanche on the Bethe lattice, the two conditions must be fulfilled. 
The sufficient condition reads: 

(i) On the connected cluster Cs of S sites, the column height equals to hcc. 

The cluster is joined with the trees Ui, i = 1,2, . . . , S + 2. Therefore the second condition 
is: 

(ii) The root sites of these trees must contain less grains then h,. 
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....... 

Figure 4. The recursive definition of the 
two-site cluster (black sites). 

'. .., 
" 

Putting accidentally one grain to a certain site lying inside the cluster Cs, the S-size 
avalanche is triggered. The first step is to calculate the number of allowed configurations 
containing the cluster Cs. Rewriting the equation (9d)  we get for one site cluster Cl 

3 '  
Nc, = n(N,cUi., + " i ) ) .  

i=l 

To calculate Nc,, equation (23) is used 

where T is the tree consisting of U,, U+ connected to the site lying in C, (figure 4). N,(T) 
and N,(T) are therefore given by ( 3 4  and thus 

In  the same way also the number of allowed configurations containing S-sized cluster, Nc,, 
is derived 

and with respect to condition (ii) 
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Using equations ( 3 4 4 3 4  and (6), (25) simplifies significantly 

As stated in [U, the distribution function 

is the multiple of the probability US of the configuration Cs which is 

and the number as of distinct S sized shapes on the Bethe lattice 

3 (2s + I)! 
2s + 1 (S + 2)!(S - l)! as = - 

If Nc, is given by (26) and N,,,! by (17), Os (28) will be 

What we are interested in is the behaviour of the distribution function gs (27) for great S. 
In this case 

I us - - 
(Al > h2 z 0, equation (15)) and 

4s 
~ 3 1 2  . as - - 

The equations (27), (31) and (32) therefore give gs for great S 

(33) gs - e-slaS-3P 

where SO = log-' 4. In the conservative model [l] ii = 0, AI = 4 (equation (1%)) and 
therefore gs has a power-law character (22). 
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5. Results and discussion 

I calculated x*,  single site probabilibes and the avalanche size distributions for the three 
versions of the model (la)-(lc). All the expressions derived in the previous sections are 
general and depending only on the amount of dissipated particles E. In the limit E = 0 
the model (la)-(IC) is conservative and I get the results of Dhar and Majumdar [l], as 
expected. The numerical results are collected in table 1 and table 2. 

It can be seen from table 2, that there is a strong difference in the avalanche size 
distributions for the conservative (it = 0) and non-conservative (E = 1,2,3)  cellular 
automata. Dissipation causes the exponential drop of gs and thus incorporates a typical 
length scale into the distribution. Figure 5 shows a plot of the scale SO (33) versus A, where 
A denotes that fraction of material, which dissipates to the environment. The dependence 
has a power-law character, namely SO - this indicates, that the non-conservative 

’bble 1. Single-site probabilities for the conservative (6 = 0) and all wee non-conservative 
versions of the model (la)-(lc). I denotes the number of dissipated particles. 

Table 2. Positive solutions x’of the fixed-point equation (5). eigenvalues A I ,  A2 of the transfer 
matrix B (14) and the avalanche size dismbutions for the conservative (i = 0)  and all tree 
non-conservative versions of the model (la)-(lc). B denotes the number of dissipated particles. 

2. A1 A2 gs 
R = O  1 4 1 gs : s-v 
i = l  A- 1 4.8284 0.4142 gs - 0.829sS-3/2 
i = 2  
i = 3  + 6.8610 0.2152 gs - 0.583sS-3/2 

4 5.8423 0.2807 gs - O.68SsS-’/2 
- J i i - 3  

1 Figure 5. The dependence of the scale S, (33) 
on the fraction of the dissipated material A. A 10 -2 



6914 M MarkoSovd 

randomly driven automata with open boundary conditions defined by (la)-(IC) cannot 
reach the soc state. This is in contradiction to the results found for the open boundary 
continuously driven models [4,24], where the power-law avalanche size distributions were 
found. 

The non-conservative model also differs from the conservative one in another property. 
It was shown [l], that in the conservative celIular automaton, multiple topplings of certain 
inner site 0 are rare but possible, and the probability that U topples at least in times, 
together with the probability PS that there are exactly S topplings in the avalanche, were 
calculated analytically. In the model (la)-(lc) there are no multiple topplings. All the sites 
topple only once during the avalanche and therefore Ps = gs for all S. 
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